

Eigenvalues and Eigenvectors - Problems 3

(a) Find the eigenvalues for the following matrix A, and for each eigenvalue λ of A determine a maximal set of linearly independent eigenvectors associated to λ. Say then if the matrix is diagonalizable or not, and motivate your answer. In the case A is diagonalizable, determine an invertible matrix U such that $U^{-1} A U=D$ is diagonal.

$$
A=\left(\begin{array}{ccc}
8 / 7 & 2 / 7 & 1 / 7 \\
4 / 7 & 15 / 7 & 4 / 7 \\
-2 / 7 & -4 / 7 & 5 / 7
\end{array}\right)
$$

(b) Find the eigenvalues for the following matrix B, and for each eigenvalue λ of B determine a maximal set of linearly independent eigenvectors associated to λ. Say then if the matrix is diagonalizable or not, and motivate your answer. In the case B is diagonalizable, determine an invertible matrix U such that $U^{-1} B U=D$ is diagonal.

$$
B=\left(\begin{array}{ccc}
2 & 1 & 0 \\
-2 & -1 & 0 \\
1 / 2 & 1 / 2 & 0
\end{array}\right)
$$

Eigenvalues and Eigenvectors - Answers 3

(a) The eigenvalues are $\lambda=2,1$. The eigenvalue $\lambda=2$ has only one linearly independent eigenvector, namely $\left(\begin{array}{c}1 \\ 4 \\ -2\end{array}\right)$, while $\lambda=1$ has two linearly independent eigenvectors, namely $\left(\begin{array}{c}-2 \\ -1 \\ 4\end{array}\right)$ and $\left(\begin{array}{c}3 \\ -2 \\ 1\end{array}\right)$.
Since there are three linearly independent eigenvectors, A is diagonalizable.
A can be diagonalized by taking

$$
U=\left(\begin{array}{ccc}
1 & -2 & 3 \\
4 & -1 & -2 \\
-2 & 4 & 1
\end{array}\right)
$$

so that

$$
U^{-1} A U=\left(\begin{array}{ccc}
1 / 7 & 2 / 7 & 1 / 7 \\
0 & 1 / 7 & 2 / 7 \\
2 / 7 & 0 & 1 / 7
\end{array}\right)\left(\begin{array}{ccc}
8 / 7 & 2 / 7 & 1 / 7 \\
4 / 7 & 15 / 7 & 4 / 7 \\
-2 / 7 & -4 / 7 & 5 / 7
\end{array}\right)\left(\begin{array}{ccc}
1 & -2 & 3 \\
4 & -1 & -2 \\
-2 & 4 & 1
\end{array}\right)=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

(b) The eigenvalues are $\lambda=1,0$. The eigenvalue $\lambda=1$ has only one linearly independent eigenvector, namely $\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$.
Also $\lambda=0$ has only one linearly independent eigenvector, namely $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.
Therefore B is not diagonalizable, since it has at most two linearly independent eigenvectors.

